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Abstract — A 400 MWth direct cycle Pebble Bed Modular reactor was under
development in South Africa. The work performed included design and safety
analyses. In HTR/PBMR, graphite dust is generated during normal reactor
operation due to pebble-to-pebble scratching. This dust will be deposited throughout
the primary system. Furthermore, the dust will become radioactive due to sorption
of fission products released, although in very small quantities, during normal
operation. This paper presents a model and analyses of the PBMR turbine with the
SPECTRA code. The purpose of the present work was to estimate the amount and
distribution of deposited dust and the fission products, namely cesium, iodine, and
silver, during plant life-time, which was assumed to be 40 full-power years.

The performed work showed that after 40 years of plant life-time deposited layers
are very small. The largest deposition is of course observed on the dust filters. Apart
from the dust filters, the largest dust deposition is observed on the:

e Quter Casing (inner walls)

o Turbine Rotor Cooling Cavity (inner walls)

¢ HPC Cold Cooling Gas Header (inner walls)
This is caused by relatively low gas velocities in these volumes. The low velocities
allow a continuous build-up of the dust layer.

About 90% of cesium, 40% of iodine, and 99.9% of silver is adsorbed on the
metallic structures of the turbine. The sorption rate increases along the turbine due
to decreasing temperatures. In case of cesium and iodine the highest concentrations
are observed in the last stage (stage 12) of the turbine. In the case of silver the
sorption is so large that the silver vapor is significantly depleted in the last stages of
the turbine. This is a reason for having a maximum in silver concentration in the
stage 10. In the following stages the concentration decreases due to very small silver
vapor fraction in the gas..

I. INTRODUCTION

A 400 MW-th direct cycle Pebble Bed Modular
Reactor was under development in South Africa. The
work performed included design and safety analyses.
In HTR/PBMR, graphite dust is generated during
normal reactor operation due to pebble-to-pebble
scratching. This dust will be deposited throughout
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the primary system. Furthermore, the dust will
become radioactive due to sorption of fission
products released, although in very small quantities,
during normal operation. This paper presents a
model and analyses of the PBMR turbine with the
SPECTRA code. The purpose of the present work
was to estimate the amount and distribution of
deposited dust and the fission products, namely



cesium, iodine, and silver, during plant life-time,
which was assumed to be 40 full-power years. This
was needed to estimate the radiation level and finally
to determine possible irradiation doses during
maintenance work around the turbine unit.

A model of the PBMR turbine for plateout
analyses with the SPECTRA code [1] has been
prepared in cooperation between PBMR (South
Africa) and Nuclear Research and Consultancy
Group (NRG) based on the data available from
references [2], [3], [4], [5]. The model has been
applied:

e to perform a long term (plant life-time) analysis of
dust transport,

e to perform a long term (plant life-time) analysis of
fission product transport and plateout.

The turbine model is shortly presented in section
Il. Section Il presents results of calculations
performed with the model. Finally, section IV
presents the conclusions.

I1. SPECTRA MODEL OF PBMR TURBINE
I1.LA. SPECTRA Code

The SPECTRA code [1] is an accident analysis
code developed at NRG, the Netherlands. SPECTRA
(Sophisticated Plant Evaluation Code for Thermal-
hydraulic Response Assessment) is a computer
program designed for thermal-hydraulic analyses of
nuclear or conventional power plants.

Within the part of the code called Radioactive
Particle Transport Package (RT Package) models are
available for release of fission products, aerosol
transport, deposition, and resuspension. Radioactive
chains of fission products are tracked. The following
aerosol models are available in the SPECTRA code:
o Gravitational settling
e Thermophoresis
¢ Brownian diffusion
e Turbulent deposition
Inertial impaction
Resuspension
Coagulation (agglomeration) of aerosol particles
and deposited particles
Inter-volume aerosol transport

The following fission product models are
included in the SPECTRA code:

e FP release models (CORSOR, CORSOR-M, user-

defined functions)
¢ Condensation of FP Vapors.
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e Sorption of FP vapors on surfaces, on aerosol
particles and deposited particles. Two sorption
models are available:

o Sorption Model 1 (SPECTRA model). A simpler
model, similar to the one adopted in the
MELCOR code [10], developed by Sandia.

o Sorption Model 2 (PATRAS/SPATRA model). A
more detailed model adopted for the codes
PATRAS, SPATRA [11], [12], developed at
Julich.

An extensive Verification and Validation (V&V)
of the code has been performed using measured data
as well as code to code comparisons for various
types of power plants. The V&V related to HTR’s, in
particular sorption of fission product vapors, consists
of AVR data; Laminar Loop experiments, Vampyr
and Dragon experiments. The V&V is described in
detail in Volume 4 of reference [1].

11.B. Nodalization

The turbine model has been developed at PBMR
based on system drawings and turbine maps and
efficiency data for each turbine stage, references [2],
[3], [4], [5]. Nodalization diagrams of the PBMR
Turbine model are shown in Fig. 1, Fig. 2, and Fig.
3. The figures can be generally described as:

e Connections, Fig. 1, shows all cooling lines and
connections at the boundaries.

e Main body, Fig. 2, shows the turbine with all
internal cooling flows and leak flows.

e Stages, Fig. 3, shows the performance of turbine
stages, power per stage, rotor and stator cooling
flow per stage.

The model consists of 47 Control Volumes
(CV), 85 Junctions (JN), and 58 1-D Solid Heat
Conductors (SC). Each of the 12 stages of the
turbine has been modeled explicitly using a Turbine
Junction, available in SPECTRA [1], with the
turbine maps and stage efficiency supplied based on
available data [2], [5].

The model has five boundaries, for which the

boundary conditions must be supplied (Fig. 1):

e Turbine inlet (CV-008)

e Turbine outlet (CV-011)

e Inlet from Core Inlet Pipe (CIP) to the Hot
Cooling Gas Header (CV-091)

e Inlet from High Pressure Compressor (HPC) to the
Cold Cooling Gas Header (CV-901)

e Inlet from Low Pressure Compressor (LPC) to the
turbine inner casing (CV-315)
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Fig. 3  Turbine - stages

The boundary conditions are taken from
available design data or calculations performed with
a full model.

The model has been tested by performing a run
fat 100% power and comparing the main parameters,
such as flows, pressures, temperatures, to the design
data from Mitsubishi [3] and the values obtained
with the Flownex code [4]. The flow resistance
factors of the leak flows paths and the cooling lines
have been adjusted to match the flows in agreement
with the design data. The model and test calculations
are described in reference [6] and is not further
discussed here. The modeling assumptions and data
related to the dust and fission products are described
below.

11.C. Dust Models

To perform the dust and fission product analyses
the Radioactive Particle Transport Package (RT) in
SPECTRA was activated and the following input
coefficients were selected:

e Density of dust particles: 1750.0 [kg/m3]
e Thermal conductivity of dust: 10.0 [W/(m-K)]
¢ Porosity of deposited layers: 0.5 [-]

Fifteen dust size sections were used, the same as
used for PBMR and NGNP analyses. The size
sections representative diameters are listed in Table
1.
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SC-502 Turhine rotor cooling cavity
Stage 7 Stage 8 Stage @ Stage 10 Stage 11 Stage 12

Table 1: Diameters of dust size sections

Size sec. D, [microns]
1 0.202
2 0.356
3 0.493
4 0.632
5 0.873
6 1.218
7 1.598
8 1.953
9 2.322
10 2.718
11 3.078
12 3.458
13 10.0
14 20.0
15 50.0

The resuspension model of Vainshtein was used,
with “all defaults”, this means adhesive spread factor
equal to: o = 4.0 and the following input parameters
for the adhesion force calculation:

e surface roughness: 10~° [m],
o relative humidity1.0 [-].

The dust filters were modeled using the inertial
impaction model with impaction efficiency equal to
the dust filter efficiency: 0.9. The filter efficiency
was estimated by experts from PBMR as exact value
was not known. The model was activated on the dust
filter structures: SC-591 and SC-592. The inertial
impaction model for these structures was associated
with the jet from the inlet junctions: JN-514 and JN-



528 respectively (Fig. 1). The inertial impaction
model was used instead of the aerosol filter model
because in SPECTRA a filter is associated with
junction (JN) and no sorption model exists for dust
particles present in JN. In order to be able to
calculate sorption on dust present on the filter, the
filter must be represented by a solid structure (SC),
since the sorption of fission products on SC-
deposited particles is calculated by the code.

11.D. Fission Product Models

Sorption of fission products is discussed below,
first for sorption on the metallic surfaces and next for
sorption on the dust particle surfaces.

11.D.1. Fission Products on Metallic Surfaces

For the metallic surfaces, the Sorption Model 2
(PATRAS/SPATRA model) available in SPECTRA
[1] was applied:

Stotal :a'(l_g)'u'cb‘_S'Crev_n'cd

1
S i :a-(l—H)-u-C5 '(1_ﬂ)_77'cd .

Here Sy is the total sorption flux [kg/s], Sqif IS
the part that penetrates and diffuses into the material
[Kg/s], e is the sticking coefficient (assumed =1.0), &
is reversible surface coverage, Cs is the vapor
concentration in the &-sublayer, [kg/m®], Cry is the
number of adsorption sites occupied by reversibly
bound molecules per unit surface area, [m?], & is
the desorption coefficient, [s ], # is the evaporation
coefficient, [s"] (assumed =0.0), and (1-p) is the
penetration factor. The coefficients &, (1-5), (1-6)
are given by:

9=39,-exp (— ?—j} )
Aﬁ

(L=p)=0=F)- | == (3)

-o-{i-g)

Here T, is the wall temperature [K], Cyax is the
maximum number of sorption sites per unit surface
area, [m?] (assumed equal to 4x10'®). The sorption
parameters on metallic surfaces were assumed
following [9]:

v=10"exp(-28150/T,), 1=0.0
v=10"exp(-21666/T,), 1=0.0
v=10"exp(-30670/T,), 1=0.0

e Cs: (1-B)=10",
o I:  (1-p)=0.0,
e Ag (1-)=10",
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11.D.2. Fission Products on Dust Surfaces

+ For the dust particles, the Sorption Model 1
(SPECTRA model) [1] was applied:

S=AT)-C, ~B(T)-C, ©

Here S is the sorption flux, Cy is the isotope
concentration in the gas [kg/m?], Cq is the isotope
concentration on the surface [kg/m?], A(T) and B(T)
are  temperature-dependent  coefficients.  The
following sorption coefficients on dust particles were
assumed [8]:

Cesium on dust:

1.0 for T =500 K
A(T,) =41.0x10% for T =800K
1.0x10™* for T =1100 K
B((T,) =1.0x10° (6)
1.0x10™**  for T =500 K
C..(T,)=41.0x10™" for T =800 K
1.0x10°  for T =1100 K

lodine on dust:

45%x10"  for T =500 K
A (T,) =145x10"° for T =800 K
45%x10° for T =1100 K
B.(T,) = 1.0x10° @)
40x10™"*  for T =500 K
C..(T,)=44.0x10"" for T =800 K
40x10°  for T =1100 K
Silver on dust:
1.0 for T =500 K
A (T,) =410x107% for T =800 K
1.0x10* for T =1100 K
B,(T,) =10x10"° ®)
1.0x10™**  for T =500 K
C...(T,)=41.0x10™" for T =800 K
1.0x10°®  for T =1100 K



I1l. RESULTS

As a first step the turbine start up to a 100%
power has been calculated and the thermal-hydraulic
results were compared to the source data. The
resulting temperatures and flows are shown in Fig. 4.
Accuracy of the thermal-hydraulic solution is
discussed in [6] and is considered sufficient for the
dust and fission product analyses.

Two runs are presented below:
e Long-term dust analysis for the turbine at 100%
power - discussed in section 1A,
e Long-term analysis of fission products for the
turbine at 100% power - discussed in section 111.B.

I11.A. Long-Term Dust Analysis for the Turbine at
100% Power

The purpose of this run is to investigate dust
transport and deposition on the turbine structures
during the plant life-time. The plant life-time of 40
years was assumed.

The dust concentrations at the turbine boundaries
were assumed based on the values calculated for the
NGNP plant [7]. This was done in absence of full
model PBMR results. The airborne dust
concentrations at the outlet of the NGNP reactor
vessel (CV-510) were used. The dust masses for each
size section in the NGNP outlet pipe are listed in
Table 2.

Table 2: Dust concentrations at the turbine
boundaries.

Size sec. Mass, [kg]
1 8.19231x1071°
2 1.49819x107°
3 8.85027x10°®
4 1.09654x10~"
5 1.22373x10~"
6 2.39009x10 "’
7 1.85693x10~"
8 1.49783x10”’
9 1.17983x10~"
10 9.02195x10°®
11 4.84947x10°®
12 1.43496x10 '
13 1.86656x10°
14 7.38372x10°
15 1.57060x10~"

The values listed in Table 2 were used at the
following boundaries (see Fig. 1):
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e CV-008 (inlet)
e CV-315 (LPC)
e CV-901 (HPC)
e CV-091 (CIP)

Results are shown in Fig. 5, Fig. 6, Fig. 7, and

Fig. 8. The figures show:

e Airborne dust concentrations (sum of all size
sections) in Control Volumes in [1/m®], shown
using the grey scale.

e Deposited layer thickness (calculated using the
assumed porosity of the dust layer of 0.5) on the
surfaces of Solid Heat Conductors in [m], shown
using the triple, blue-yellow-red, color scale.

The airborne concentrations in the main stream
decrease to about half of the inlet value (from
2.25x108 m™ in the intake to 1.06x10° m2 in the
diffusor). This is an effect of gas decompression.
Due to decompression the same mass of gas
occupies larger volume and consequently the same
mass of dust occupies larger volume. Therefore the
gas concentrations, expressed in particles per unit
volume are decreasing. The decrease of dust
concentrations along the main stream has nothing to
do with deposition on the turbine structures, which,
as will be shown below, is very small in the turbine
main stream. This is seen in Fig. 6 as the dust flow at
the inlet (8.94x10® kg/s) and at the outlet (9.21x10°°
kals) are very similar. A small increase in the dust
flow is caused by dust entering the main stream
through the cooling lines.

After 40 years of plant life-time deposited layers
are very small (of order of 10° m on the stator and
rotor blades - Fig. 7). The largest deposition is of
course observed on the dust filters (Fig. 5). Apart
from the dust filters, the largest dust deposition is
observed on the inner walls of (Fig. 6):

e Outer Casing 2.48x10* m
e Turbine Rotor Cooling Cavity 2.30x10*m
e HPC Cold Cooling Gas Header 1.58x10* m

This is caused by relatively low gas velocities in
these volumes (the values are about 0.15, 0.10, and 5
m/s in these three volumes respectively). There is a
continuous build-up of the dust layer in the regions
because the gas velocities are too low to cause any
significant dust resuspension. In other places of the
system the dust is resuspended very quickly due to
large gas velocities, and an equilibrium layer
develops. The equilibrium layer thickness is a result
of coagulation of the deposited dust; as the larger
particles are quickly resuspended.
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Fig. 8 Deposited layer thickness

Fig. 8 shows the deposited layer thicknesses in
the three surfaces with the largest deposition, and the
layer thickness on the stator of the Stage 1. It is seen
that an equilibrium layer on the stator develops very
quickly. The same behavior is observed on all stator
and rotor structures and therefore the net deposition
rate on these structures is practically zero.

[11.B. Long-Term FP Analysis for the Turbine at
100% Power

The purpose of this run is to investigate fission
product transport and deposition (plateout) on the
turbine structures during the plant life-time. The
plant life-time of 40 years was assumed. Three
fission product isotopes were selected for the
analysis:

e Cs-137
e |-131
e Ag-110m

These isotopes are of primary importance for the
long-term plateout on the metallic surfaces. The
fission product concentrations at the turbine
boundaries were assumed based on the values
calculated for the NGNP plant [7]. This was done in
absence of full model PBMR results. The
concentrations at the outlet of the NGNP reactor
vessel (CV-510) were used. The isotope masses were
obtained in a few trial and error runs, to match the
vapor pressures in the NGNP outlet pipe are listed in
Table 3.

The values listed in Table 3 were used at the
turbine inlet (CV-008). The fission product
concentrations in the LPC, HPC, and CIP were
assumed to be zero. This is a good approximation
because the isotopes leaving the turbine will be
practically completely adsorbed on the recuperator
and the pre-cooler so the concentrations in the LPC,
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HPC, and CIP are very small. A more detailed
numbers should be obtained in the future.

Table 3 Fission product concentrations at the turbine
boundaries

Vapor Pressure Mass
Isotope No. [Pa] [ko]
(NGNP)
Cs-137 2 5.0x10° | 6.78x10 %
1-131 4 50x10" | 6.49x107%°
Ag-110m 12 7.0x10° | 7.62x10 %

Results for Cs-137, 1-131, and Ag-110m, are
given in sections 11.B.1, I11.B.2, and I1Il.B.3,
respectively.

111.B.1. Cesium, Cs-137

Results are shown in Fig. 9, Fig. 10, and Fig. 11.
The figures show:
e Vapor pressures of Cs-137 in Control Volumes in
[Pa], shown using the grey scale.
e Concentrations of Cs-137 adsorbed on metallic
surfaces of Solid Heat Conductors in [1/m?],
shown using blue-yellow-red color scale.

The incoming flow of Cs-137 is 3.88x10 "2 kg/s
(Fig. 10). The mass flow exiting the turbine is
4.88x10 " kg/s (Fig. 10). This means that 87% of
the incoming cesium is adsorbed on the metallic
structures of the turbine. The highest concentrations
of the adsorbed material is observed in the last stage
of the turbine (9.02x10%" atoms/m?® - Fig. 11). The
high sorption rate in this region is caused by
relatively low temperature.

I11.B.2. lodine, 1-131

Results are shown in Fig. 12, Fig. 13, and Fig.
14. The figures show:
e Vapor pressures of 1-131 in Control Volumes in
[Pa], shown using the grey scale.
e Concentrations of 1-131 adsorbed on metallic
surfaces of Solid Heat Conductors in [1/m?],
shown using blue-yellow-red color scale.

The incoming flow of 1-131 is 3.71x10™* kg/s
(Fig. 13). The mass flow exiting the turbine is
2.23x10 " kg/s (Fig. 13). This means that 40% of
the incoming iodine is adsorbed on the metallic
structures of the turbine. The highest concentrations
of the adsorbed material is observed in the last stage
of the turbine (3.75x10" atoms/m? - Fig. 14). The
high sorption rate in this region is caused by
relatively low temperature.
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Fig. 17 Turbine (stages), Ag vapor pressures [Pa] and surface concentrations [1/m?]

111.B.3. Silver, Ag-110m

Results are shown in Fig. 15, Fig. 16, and Fig.
17. The figures show:
o Vapor pressures of Ag-110m in Control Volumes in
[Pa], shown using the grey scale.
e Concentrations of Ag-110m adsorbed on metallic
surfaces of Solid Heat Conductors in [1/m?],
shown using blue-yellow-red color scale.

The incoming flow of Ag-110m is 4.36x10 %
kg/s (Fig. 16). The mass flow exiting the turbine is
5.21x10" kg/s (Fig. 16). This means that 99.9% of
the incoming silver is adsorbed on the metallic
structures of the turbine. The highest concentrations
of the adsorbed material is observed in the stage 10
of the turbine (7.15x10" atoms/m? - Fig. 17). As in
the cases of cesium and iodine, the sorption rate
increases along the turbine due to decreasing
temperatures. However, in the present case the
sorption is so large that silver vapor is significantly
depleted in the last stages of the turbine. The vapor
pressure of silver is 6.01x10°° Pa at in the first stage,
2.47x10°° Pa at in the stage 10, and only 1.09x10 ™
Pa in the stage 12 (Fig. 17). This is a reason for
having a maximum in silver concentration in the
stage 10.
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IV. CONCLUSIONS

This paper presents results of dust and fission
product analyses performed for the of the PBMR
turbine. The purpose of the present work was to
estimate the amount and distribution of deposited
dust and the fission products, namely cesium, iodine,
and silver, during plant life-time, which was assumed
to be 40 full-power years. The turbine design
considered here was that which had been designed
for the PBMR plant in the year 2008, just before a
decision was made not to continue with the PBMR
project. The results presented here are of course
applicable to this type of turbine its technical
parameters, such as filter efficiency etc. If a plant
similar to PBMR will be considered in the future the
current results and conclusions may not be adequate
due to differences in design, operating conditions,
etc. The specific conclusions are given below.

IV.A. Dust Transport and Deposition

After 40 years of plant life-time deposited layers
are very small (of order of 10° m on the stator and
rotor blades). The largest deposition is of course
observed on the dust filters. Apart from the dust
filters, the largest dust deposition is observed on the
following surfaces:



e Quter Casing (inner walls)
e Turbine Rotor Cooling Cavity (inner walls)
e HPC Cold Cooling Gas Header (inner walls)

This is caused by relatively low gas velocities in
these volumes. These low velocities allow a
continuous build-up of the dust layer. In other places
of the system the dust is resuspended very quickly
due to large gas velocities, and an equilibrium layer
develops. The equilibrium layer thickness is a result
of coagulation of the deposited dust; as the larger
particles are quickly resuspended. Therefore the net
deposition of dust on the turbine structures is
relatively small, i.e. practically all dust entering the
turbine intake is passing through to the turbine
outlet.

IV.B. Fission Product Transport and Plateout

In the present analysis the fission product
concentrations in the LPC, HPC, and CIP were
assumed to be zero. This is a good approximation
because the isotopes leaving the turbine will be
practically completely adsorbed on the recuperator
and the pre-cooler so the concentrations in the LPC,
HPC, and CIP are very small. A more detailed
numbers should be obtained in the future.

About 90% of cesium, 40% of iodine, and 99.9%
of silver is adsorbed on the metallic structures of the
turbine. The sorption rate increases along the turbine
due to decreasing temperatures. In case of cesium
and iodine the highest concentrations are observed in
the last stage (stage 12) of the turbine. In the case of
silver the sorption is so large that silver vapor is
significantly depleted in the last stages of the turbine.
This is a reason for having a maximum in silver
concentration in the stage 10. In the following stages
the concentration decreases due to very small silver
vapor fraction in the gas.

The analyses were performed to estimate the
radiation level and finally to determine possible
irradiation doses during maintenance work around
the turbine unit.

Nomenclature
Symbols
A(T), B(T) temperature-dependent
coefficients
Cq isotope concentration on the surface [kg/m?]
maximum number of sorption sites per unit
surface area, [m ]
Crev number of adsorption sites occupied by
reversibly bound molecules per unit surface
area, [m?]

sorption
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Cv

Stotal
Saiff

Tw
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isotope concentration in the gas volume,
[kg/m?]

vapor concentration in the §-sublayer,
[kg/m?]

total sorption flux, [kg/s]

part of the sorption flux that penetrates and
diffuses into the material, [kg/s]

wall temperature, [K]

Greek symbols

a sticking coefficient, [-]

(1-B) penetration factor, [-]

n evaporation coefficient, [s™]
4 desorption coefficient, [s]

0 reversible surface coverage, [-]

Abbreviations

CIP Core Inlet Pipe

Ccv Control Volume

HPC  High Pressure Compressor

JN Junction

LPC  Low Pressure Compressor

SC 1-D Solid Heat Conductor

RT Radioactive Particle Transport Package in

SPECTRA
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